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Abstract. If a market is considered to be a social choice function, then the
domain of admissible preferences is restricted and standard social choice the-
orems do not apply. A substantial body of analysis, however, strongly sup-
ports the notion that attractive strategy-proof social choice functions do not
exist in market settings. Yet price theory, which implicitly assumes the strategy-
proofness of markets, performs quite well in describing many real markets.
This paper resolves this paradox in two steps. First, given that a market is
not strategy-proof, it should be modeled as a Bayesian game of incomplete
information. Second, a double auction market, which is perhaps the simplest
operationalization of supply and demand as a Bayesian game, is approxi-
mately strategy-proof even when the number of traders on each side of the
market is quite moderate.

1 Introduction

Typically an intermediate microeconomics textbook defines the equilibrium
price in a market as the price at which the supply and demand curves inter-
sect, explaining that only at this price are both buyers and sellers satisfied: no
buyer wants to offer a higher price in order to purchase an additional unit and
no seller wants to offer a lower price in order to sell an additional unit. If the
price in the market is not at the equilibrium level, then either some buyer or
some seller will find it profitable to bid a shade higher or offer a shade lower
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with the expectation that that change will permit it to trade additional units
profitably.! Consequently only at the equilibrium price does the market come
to rest.

This story of market equilibrium does not mention — in fact has no room
for — strategic behavior. Supply and demand curves are built up from indi-
vidual preferences on the assumption that each buyer (or seller) takes price as
given and chooses quantity conditional on that price. Thus strategic behavior
in which a buyer underreports the number of units he is willing to purchase
at a given price in order to manipulate the price at which trade occurs is a
priori ruled out. Implicitly the textbook story assumes that trade in a market is
strategy-proof, i.e., each trader has a dominant strategy to report his or her
preferences truthfully.

A market, however, is not generally strategy-proof as the following exam-
ple illustrates. For the moment, let the market have two participants, a buyer
and a seller. The seller has a single, indivisible widget on which she places a
cost of ¢ € [0, 1]. The buyer would like to buy the widget if he does not have
pay more than the value v € [0, 1] he places on it. The values ¢ and v are pri-
vate information to the seller and buyer respectively. Finally, let the equilib-
rium price be found through a simple well defined, auction-like process.

Suppose, for specificity, that v = 0.8 and ¢ = 0.55. Since v > ¢ efficiency
requires that trade take place. The auctioneer begins the process crying out a
proposed price 0.5. The seller responds that she is unwilling to sell her widget
at that price while the buyer responds that he is willing. Since excess demand
exists in the market the auctioneer begins a process of raising the proposed
price in increments of 0.1 until one of two events occurs: (i) the buyer and
seller both accept the price and the market clears, or (ii) the buyer switches
from accepting the proposed price p to rejecting it, in which case the auction-
eer concludes that more than likely v # ¢, trade would be inefficient, and the
market should close without trade occurring. Upon announcing the new pro-
posed price of 0.6, the buyer responds that he is willing to buy. The seller,
however, has a problem in deciding how to respond. She in fact is willing to
trade at 0.6, but if she does agree to trade at this price, then her gain is only
0.05 (the price less her cost ¢).? She knows that the next price the auctioneer
will cry out will be 0.7. Holding out for that price may be worthwhile, though
it has the danger that the buyer will be unwilling to pay 0.7, an eventuality
that would result in no trade because the auctioneer would incorrectly infer
that v < ¢ and close the market. Nevertheless the seller takes the risk, the
auctioneer announces 0.7, both the buyer and seller accept the price, and trade
occurs with the seller realizing gain of 0.15 and the buyer realizing gain of 0.1.

This example illustrates two fundamental points: First, traders in a market
may have an incentive to act strategically: the seller netted an extra 0.1 gain at

! See, for example, Frank (1991, p. 32-35).

2 In the classical theory of tAtonnement as introduced by Walras she would accept the
price 0.55, for that theory assumes price taking behavior on the part of all traders. See
Negishi (1989, p. 589-96).



Strategy-proofness and markets 39

the buyer’s expense as a result of her strategic maneuver. Second, strategic
behavior may result in inefficiency. If the buyer’s value had been 0.68 rather
than 0.8, then the buyer would have surely rejected the price 0.7, the auc-
tioneer would have closed the market, and the available gains from trade
would have been lost as a result of the seller’s maneuver.

Nothing about this example depends on the market consisting only of a
single buyer and a single seller. Parallel examples are easily constructed for
markets that have m buyers and m sellers — call such a market a size m market
— in which each seller i has a one widget whose opportunity cost to her is ¢; €
[0, 1] and each buyer j seeks one widget whose value to him is v; € [0, 1].

This example, showing the manipulability of a simple auction-like market,
raises the following question: if market mechanisms that govern the setting
of price are not strategy-proof, then why is supply and demand analysis (i.e.,
price theory) apparently so robust as an explanation for the prices that mar-
kets generate? The standard answer to this question, which text books intro-
duce in their discussion of perfect competition, is that if the market is large in
the sense of having many participants (none of whom is inordinately big), then
no individual can significantly affect the price at which trade occurs. Therefore
each trader is a price taker, has no incentive to misrepresent his or her pref-
erences, and the market is strategy-proof. But this leaves open the question
of how large does a market need be in order to be large, for strictly speaking
an individual trader can affect price even in a very large finite market. It is
this last question, how large is large enough, that is the focus of my discussion
here. My belief is that the answer I propose provides insight into the possibil-
ities of ““approximate’ strategy-proofness within market settings.

The argument that I make here depends on work that I have done with
Aldo Rustichini and, especially, Steven Williams. It shows two things. First, if
the text book concept of supply and demand is operationalized as a double
auction under incomplete information within simple exchange markets of the
sort used in the example above, then as the market size m increases the equi-
librium strategic behavior in the market decreases rapidly towards zero. Spe-
cifically, if the market’s size doubles, then the maximal amount by which any
trader misrepresent’s his cost/value is cut in half. This convergence of strat-
egies to truth-telling implies that each time the market size is increased by a
factor of two, then in relative terms the expected inefficiency of the market
decreases by a factor of four. Numerical examples suggest that an extremely
good approximation to a large market may be obtained with a market of size
m = 8. Second, in a well defined sense, the double auction does as well in
achieving efficiency as any mechanism possibly can. In the simple exchange
markets we have studied no mechanism converges to efficiency at a rate that
dominates the quadratic rate the double auction achieves.

Before reviewing these results in detail, two topics need discussion. First,
the assertion above that strategy-proofness is impossible in a market setting
needs documentation. Second, the impossibility of “exact” strategy-proofness
implies that the appropriate way to explore the possibility of “approximate”
strategy-proofness is by modeling the market in question as a game of in-
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complete information and examining the nature of the equilibria. With these
preliminaries complete, I review the convergence results we have obtained for
double auctions and then conclude with a brief discussion of some of the
questions that these answers raise.

2 Strategy-proofness within a market

The standard, social choice formulation of strategy-proofness is this. There is
a group of m > 2 individuals and a set X = {x, y,z,...} of n > 3 alternatives
among which they must choose one. Each individual i has a complete and
transitive preference ordering R; on X where, by notational convention, P; is
the strict, not necessarily complete ordering that R; implies. Every ordering
R; of X is admissible; let Q2 be the set of these possible orderings of X. The
group uses the social choice function ¥ : Q" — X to make its choice: ¥ maps
profiles of reported preferences R = (Ry,..., R,) € Q™ to a single alternative
xeX.

Define the notation (R_;, R;) to refer to the profile R with, for individual i,
the ordering R; substituted for R;. The social choice function ¥ is strategy-
proof if no profile R e 2™, no individual i, and no ordering R; € Q exists
such that

¥(R_;,R)P:P(R),

i.e., no profile R exists at which i by reporting R; can force selection of the
alternative ¥(R_;, R;) that he prefers to ¥(R). If a social choice function is
strategy-proof, then every individual’s dominant strategy is to report his true
preference ordering R;. Strategy-proofness is attractive because it removes
game theory — and its problematic predictions — from the group decision
problem. Given this formulation the standard impossibility theorem for
strategy-proof mechanisms is that no non-dictatorial, strategy-proof social
choice function ¥ exists whose range includes every element of X.3

The standard theorem does not apply to markets because the market en-
vironment naturally imposes structure on preferences, so the set of admissible
preferences for an individual is some proper subset of Q. For example, con-
sider a size m market with m sellers and m buyers in which the traders are
assumed to have transferrable utility. Specifically, the seller’s utility is

us(ci, 05, 81) = s — (1 = 9;)¢; (1)

where ¢; € [0, 1] is the opportunity cost she incurs in selling the widget, J; €
{0, 1} is an indicator variable that takes on the value 1 if she does not sell her
widget (i.e., keeps it) and 0 if she sells it, and s; € R is the monetary transfer
she receives. Thus if she sells her widget at price p, then her utility is p — ¢;
while if she does not sell her widget and neither makes nor receives a transfer,

3 See Gibbard (1973) and Satterthwaite (1975). A social choice function Fis dictatorial
if an individual i (the dictator) exists such that F always picks as the social choice an
alternative that is maximal relative to i’s reported preferences R;.
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her utility is 0. Similarly, a buyers’s utility is

up(vy, 45 4j) = A0 + 1 (2)
where v; € [0, 1] is the value he realizes in buying the widget, 4; € {0,1} is an
indicator variable that takes on the value 1 if he purchases the widget and 0 if
he fails to purchase it, and #; € R is the monetary transfer he receives.* Note
that these utility functions have only ¢; and v; as parameters; consequently ¢;
and v; fully describe the seller and buyer’s preferences respectively.

Feasibility implies that the set of alternatives among which the social
choice function selects is

X = {(51,...72,11,3'1,...,[”,) |Ei5j+2jij < WZ,EZ'S,'-FZJ'Z]' < O} (3)

where the constraints follow from three facts: only m widgets are available
for trade, no outside source of funds is available to subsidize the market, and
widgets and money are freely disposable. X** obviously has an infinite num-
ber of elements; thus Q, the set of all possible orderings on this set X** of
alternatives, is inconceivably large. This contrasts with the situation here:
given that ¢; and v; are a priori restricted to the unit interval and parameterize
the admissible utility functions us(c;, -) and up(v;, -), the sets 2" and Q" (the
admissible preferences for the seller and buyer respectively) are negligible
subsets of Q.

The importance of this is that if the set of admissible preferences are small
compared to €2, then the possibilities for constructing a strategy-proof social
choice function are enhanced because there are a limited number of orderings
Ri € Q¢ available for a seller to choose among in order to manipulate the
outcome in her favor. Barbera and Jackson (1995) have written a remarkable
paper characterizing the strategy-proof social choice functions that exist for
an exchange economy: each of the m agents receives an endowment of the /
goods that exist in the economy, each agent has a strictly quasi-concave,
continuous, and increasing utility function u; on R’ (denote this class of utility
functions as Q*), and the social choice function prescribes a set of net trades
among the agents as a function of their reported utility functions. Their main
result (Theorem 3) shows that limiting admissible preferences to Q* does
succeed in expanding the class of strategy-proof social choice functions beyond
dictatorial functions.’ Specifically, the theorem establishes that, in this market

* Normally # < 0if 4; = 1, for if the buyer succeeds in buying the widget, then —¢ is
the price he pays for it.

> Two comments are merited concerning dictatorial social choice functions. First, a
dictatorial social choice function is not anonymous because it identifies a particular
individual as the dictator. Second, within a market setting a dictatorial social choice
function can be quite complex because agent i only cares about his own allocation, not
the allocations of other agents. This restriction permits the construction of strategy-
proof social choice functions that are serially dictatorial. In a serially dictatorial social
choice function a fixed hierarchy of agents exists. The first agent at the top of the
heirarchy (the top level dictator) chooses his most preferred allocation from a set that is
exogenously fixed as part of the functions’s definition. The next agent down the heir-
archy (the second level dictator) chooses his most preferred allocation from a set that is
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setting, an anonymous, non-bossy social choice function is strategy-proof if
and only if it prescribes anonymous fixed proportion trading.® A social choice
function is anonymous if the net trades prescribed to an agent do not depend
on the identity of that individual. It is non-bossy only if an agent must change
his own allocation in order to affect another agent’s allocation.

What is anonymous fixed proportion trading and, given that, what do we
really gain from limiting admissible preferences from Q, the set of all possible
orderings of R to Q*, the set of strictly quasi-concave, continuous, and
increasing utility functions on R'? Fixed proportion trading is complicated to
define in general; consequently I demonstrate it here within the simple supply-
demand example developed above using four traders (two sellers and two
buyers). This simplicity does have a cost: the only if part of Barbera and
Jackson’s theorem does not apply to this example because it involves restrict-
ing preferences to a small subset of Q*.7

The two sellers have costs ¢, ¢, € [0, 1] and the two buyers have values
vy, v € [0, 1]. Efficiency requires that the two widgets, initially owned by the
two sellers, be assigned to the two traders who have the highest values. Thus if
the preference profile is ¢; = 0.3, ¢; = 0.8, v; = 0.6, and v, = 0.4, as is shown
in Example 1 of Fig. 1, then efficiency requires buyer 1 and seller 2 be assigned
the two widgets, i.e., efficiency requires buyer 1 and seller 1 to trade. The
simplest member of the fixed proportions class of trading rules is the fixed
price rule.® Given an a priori chosen, fixed price pp, the rule prescribes that
every buyer who reports a valuation greater than py trades, every seller who
reports a cost less than pj trades, and if the market demand and supply does
not balance at pp, then the long side of the market is rationed by random
draw.® It is strategy-proof because no agent can affect the terms of trade. Let,

a function top level dictator’s choice, etc. Such functions are strategy-proof because no
pair of agents mutually affects the set of alternatives from which each chooses; there-
fore no strategic interaction exists.

6 The class of social choice functions and environments that they consider is restricted
to include only functions and environments that satisfy two technical conditions: tie-
freeness and a restriction on the inequality of endowments.

7 Q¢ and Qj, the sets of preference orderings this example admits, is drastically
restricted from Q% the set with which Jackson and Barbera work. Therefore their
characterization may be incomplete for these sets, and in fact it is. McAfee (1992) has
devised a clever strategy-proof mechanism that uses dual prices, runs a surplus, and is
not identified by Barbera and Jackson’s theorem. Williams (1998), however, has shown
that this restriction of preferences is not sufficient to permit the construction of an
efficient and strategy-proof mechanism.

8 Hagerty and Rogerson (1987) introduced the fixed price rule to the strategy-
proofness literature.

° For example, suppose pr = 0.5 and ¢; = 0.3, ¢; = 0.8, v; = 0.7, and v, = 0.6. Buy-
ers 1 and 2 both want to trade at this price, but on the other side only seller 1 is willing.
The choice between buyers 1 and 2 is random: with probability 0.5 buyer 1 trades and
with probability 0.5 buyer 2 trades. Note that this random rationing is inefficient:
buyer 1 should receive priority because his value is greater than 2’s value. If the
rationing were allowed to depend on the reported valuations, then the rule would no
longer be strategy-proof.
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for the examples that follow, pr = 0.5. In Example 1 the fixed price rule
achieves efficiency, for seller 1 does sell to buyer 1 as efficiency requires.

The fixed proportions rule requires that three prices be given a priori:
Dm > Dy > Pg3. The procedure for choosing among these prices is:

1. If exactly 3 traders (whether buyers or sellers is irrelevant) have valuations/
costs greater than pgs, then the price is fixed at pg;, and trade — including
necessary rationing — is conducted at that price exactly as in the fixed price
rule.

2. If exactly 2 traders have valuations/costs greater than p,, then the price is
fixed at p,, and trade is conducted at that price exactly as in the fixed price
rule. Or, equivalently, if exactly 2 traders have valuations/costs less than
D», then the price is fixed at p,, and trade is conducted at that price exactly
as in the fixed price rule.

3. If exactly 3 traders have valuations/costs less than pgs, then the price is fixed
at pg3, and trade is conducted at that price exactly as in the fixed price rule.

4. If none of the above apply, then no trade occurs.

This rule is strategy-proof because any trader who successfully shifts the
price in his favor through misrepresentation of his true preferences necessarily
causes himself to be excluded from trading. To demonstrate the rule, let the
three prices pg;, p,, and pg; be, as shown in Fig. 1, 0.75, 0.50, and 0.25
respectively. Applying these rules to Example 1 results in the price p, = 0.5
being fixed because exactly two traders have valuations greater than p,. The
efficient allocation then ensues exactly as with the fixed price rule.

Examples 2 and 3 show how the fixed proportions rule differs from the
fixed price rule. In Example 2 the fixed proportions rule prescribes no trade
because only 2 traders have valuations/costs greater than pgy while 3 traders
have valuations greater than p,. The fixed price rule does better: seller 1 sells
his widget to either buyer 1 with probability 0.5 or buyer 2 with probability
0.5. Neither rule, however is efficient; that requires buyer 1 to trade with seller
1. The situation reverses in Example 3. There the fixed proportions rule selects
price pg; because 3 traders have valuations greater than pg,. This results in
seller 1 selling her widget and buyers 1 and 2 being rationed randomly. This
rationing is not efficient, for buyer 1, with his value being greater than buyer
2’s value, should trade with certainty.

These examples illustrate two points: neither rule is efficient and neither
rule dominates the other. With respect to the first point it has long been
known that severe difficulties exist in obtaining both strategy-proofness and
efficiency in market settings. Hurwicz (1972) devised the initial demonstration
of the incompatibility of the two requirements for a two good-two agent
model of an exchange economy. Hurwicz and Walker (1990) show the im-
possibility of strategy-proof, efficient mechanisms for exchange economies in
which agents are restricted to have quasi-linear preferences. Barbera and
Jackson (1995), as we have been discussing, characterize the class of anony-
mous, non-bossy, and strategy-proof social choice functions that exist for a
very general class of exchange economies and observe that the resulting rules
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Example 1: Fixed
Proportions and Fixed Price
Both Trade

Example 2: Fixed
Price Trades; Fixed Propor-
tions Fails to Trade

Example 3: Fixed
Proportions Trades; Fixed
Price Fails to Trade

Buyer Seller

v ¢

-1 1.00

¢, =08
1T pg; = 075
*

v, =0.6

—— p2 = 050=p;
v, =04

¢, =03
T ps3 =025
—— 0.00

Buyer 1 purchases seller
1’s widget at price

Buyer Seller

v; ¢
_ 1.00
v; =09
c;=038
—T pp; = 075
v, =06
—— p, = 050=p;
;=03
T ps3 =025
— 0.00

No trade occurs.

Buyer Seller

v ¢
-1 1.00

v; =09

=08 | _o7s
T pez = 075

c;=0.6

—— py = 050=p;
—— pg; =025
— 0.00

Buyers 1 and 2, each with
probability 0.5, purchase

p, =0.5. seller 1’s widget at price

p; =0.75.

Fig. 1. Three examples of fixed proportions trading compared with fixed price trading

are not efficient. Schummer (1997) has recently shown that for the case of
two agents even the extreme step of restricting preferences to be linear is not
sufficient to obtain both strategy-proofness and efficiency. Therefore, even
though a completely general theorem has not yet been formulated and proved,
it seems clear that no attractive social choice functions exist for market
settings that are both strategy-proof and efficient.

With respect to the second point, Examples 2 and 3 show that neither the
fixed price nor the fixed proportions rule is more efficient than the other for all
possible preference profiles. A simple tabulation of the possibilities reveals
that situations such as Example 2, in which the fixed proportions rule leads to
no-trade and the fixed price rule realizes some of the available gains from
trade, are much more prevalent than situations such as Example 3, in which
the fixed proportions rule realizes gains from trade and the fixed price rule
leads to no-trade.!® This observation suggests that the fixed proportions rule,

19 The reason is that the event “exactly three traders reporting costs/values greater
than pg, or exactly two traders reporting values/costs greater than p, or exactly three
traders reporting values/costs less than pg;” is a quite restrictive event and can easily
fail to be realized even when trade should occur.
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despite the apparent flexibility it imparts on price, may in fact perform more
poorly in terms of efficiency than the fixed price rule with its single price. Thus
our deep and extremely ingenious explorations of the possibilities for con-
structing strategy-proof social choice functions in market environments have
brought little reward in terms of discovering usable mechanisms.*!

Return now to the question that I posed at the beginning: Why is price
theory, which implicitly assumes truthful revelation of preferences, such a
robust explanation for the prices that we observe in markets? This short
review has shown that it is not and can not be that market mechanisms are
strategy-proof. Yet, as price theory’s success suggests, people often act as if
markets were strategy-proof. How can this paradox be resolved?

3 Strategy-proofness, games of incomplete information, and mechanism design

Given that market mechanisms are not and can not be strategy-proof and
given that price theory does a pretty fair job of explaining prices without any
reference to traders’ efforts to manipulate the outcome, then how should the
trading process be modeled so that the apparent unimportance of strategic
behavior in the price setting process be investigated rather than assumed. My
starting point is the observation that if a social choice function ¥ is not
strategy-proof, as is normally the case in a market setting, then each individ-
ual’s best response to other agents is a function of their preferences. This fol-
lows directly from the definition of manipulability: given that the mechanism
¥ is not strategy-proof, then an individual i, profile R € Q™, and ordering
R; € Q exist such that

¥(R_;,R)P;¥(R), 4)

which is to say that if ¢; : Q" — Q is i’s best response correspondence, then

O','(R,j, Rl) # Rl‘ but rather 0','(R,l'7 R,) = Iéi.

This almost trivial observation has a deeper implication: each individual
has good reason to be uncertain about other individuals’ preferences. To see
this, let  be the manipulable social choice function a group is using and
suppose that whatever preference profile R € Q™ is realized all m individuals
believe they know every other individual’s preferences. Given a realized pref-
erence profile R € Q, the reported preference profile is the complete informa-
tion Nash equilibrium, X(R).!? Therefore the composition of y and X gives

11 T yse the word ““our” literally, for I participated in one of the earlier efforts. See
Satterthwaite and Sonnenschein (1981).

12 T am assuming here that the Nash equilibrium is in pure strategies and that, if
multiple equilibria exist, 2 makes a selection among them. If the function f were one
for which, for some profile R, only mixed strategy equilibria exist, then this argument
would have to be recast using a characterization of strategy-proofness for social choice
functions that specifiy lotteries as well as singletons. Gibbard (1978), for example,
characterized such functions for the standard social choice setting of a discrete set of
alternative with no a priori structure on the admissible orderings.
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the outcome; let this function be ¥(R) = y(2'(R)). The function ¥ is itself
a social choice function and, unless i and 2 have a very fortuitous structure,
¥ is not strategy-proof. But if ¥ is not strategy-proof, then an individual i,
a preference profile R, and ordering R; exists such that (4) holds. The inter-
pretation of (4) here is that if agent / anticipates that profile R is likely to be
realized and if he can mislead everyone else into believing that his preferences
are R; and not R;, then he can secure the outcome Y’(R,i,léi), not the out-
come ¥(R) that he prefers less according to his true preferences R;.!* In other
words, agent i/ manipulates the social choice by manipulating others’ beliefs
about his preferences.

This possibility of manipulating other individual actions by misleading them
in the formation of their beliefs suggests two complementary observations.

* This type of manipulation is common in the everyday world. Consider three
examples. A frequent, and sometimes effective way of bargaining is for the
buyer to convince the seller that he does not care very strongly for the good
that is being offered in the expectation that she will reduce the asking price
in order to clinch the deal. The essence of a confidence man’s swindle is to
convince the victim absolutely that he has her best interests at heart. Simi-
larly, an assistant professor may seek to convince his senior colleagues that
he has a more genuine love for scholarship than in fact he does, for that
belief may make his colleagues more willing to grant tenure with its com-
mitment of lifetime employment.

* Most people have been manipulated in exactly this way. Few of us are
not gullible on occasion. A reasonable response to such experiences is to
become more cautious in believing that one really knows what another
person’s preferences are. As a consequence, I would assert, experienced and
rational people tend to be retain a degree of scepticism about the prefer-
ences of even people they know quite well. This is especially true for a per-
son in a position of authority, for she certainly realizes that the people over
whom she has some measure of power tend to tell her what she wants to
hear.

The implication of these observations for understanding the robustness of
price theory is straightforward: any adequate theory must explicitly take into
account the uncertainty traders have concerning other traders’ preferences and
explain how the market mechanism successfully extracts this preference
information even as it uses this information to allocate the widgets being
traded.'* The essence of the exchange problem is asymmetric information
about preferences.

The obvious way to proceed, which I follow, is to model trade as a Baye-
sian game of incomplete information and to derive its equilibrium properties.

13 This argument to my knowledge was first developed in Blin and Satterthwaite
(1975).

14 This rules out the theory of Nash implementation as a useful tool except in special
situations.
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This, however, is not the only way to proceed. For example, Jackson and
Manelli (1997) use less structure on beliefs than the Bayesian game approach
requires and show how an exchange economy must converge to a competitive
equilibrium as the number of agents become large. The generality of their
results, however, exacts a price: they do not derive any rates at which equi-
librium allocations converge to an efficient allocation as the economy grows.
Therefore they can not give an indication as to how big a market must be in
order to be approximately competitive.

Before turning to a discussion of the results that have been achieved in the
Bayesian game framework, one additional modeling issue should be discussed.
Mechanism design theory is a marvelous tool that has been developed over
the past 20 years that allows us to understand a host of issues involving
asymmetric information. It, however, is not directly useful here, for it assumes
that the mechanism designer as well as the participants share common
knowledge of the underlying distribution F of preferences. Taking the prior
distribution F as given, the mechanism designer might construct, for example,
a social choice function ¥ : (Q¢)" x (Q23)™ — X** such that it maximizes
the ex ante expected gains from trade subject to the constraints of:

* Incentive compatibility, which requires that each trader’s Bayesian Nash
equilibrium strategy be to report his true cost/value,

¢ Interim individual rationality, which requires that each trader’s expected
utility conditional on his cost/value be nonnegative, and

* Ex ante budget balancing, which requires that the expectation of the
summed monetary transfers X;s; + X;¢; be nonpositive.

As long as the underlying prior distribution F remains constant ¥ remains
constrained efficient and this works well. If, however, the underlying prior
should change from F to F, then one of two things happens:

* The social choice function ¥ remains fixed, and as a consequence of the
distribution changing from F to F, each agent changes his strategy and
honest revelation of preferences is no longer necessarily a Bayesian Nash
equilibrium. There is no reason to think that the resulting equilibrium
achieves, or comes close to achieving, the same constrained efficiency as the
original equilibrium did for the original distribution F.

* The mechanism designer reoptimizes the social choice function from ¥ to
¥ based on his understanding of what the new distribution is. If the new
prior F is common knowledge among everyone, agents and mechanism
designer alike, then the redesign is successful and there is nothing more to
be said. If, however, the mechanism designer does not share in the common
knowledge among the traders that the distribution is now F, then it is
unclear how he can possibly obtain the needed information from the self-
interested agents. The mechanism ¥ is only designed to elicit preferences
information given common knowledge of the underlying distribution, not to
elicit information sequentially about the agents’ beliefs about each other
and then about their individual, private preferences.
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An appropriate approach to avoid these conundrums is to abandon the
mechanism design approach of tailoring the mechanism to a specific environ-
ment and instead to pick ¥ so that, in some sense, it performs well no matter
what the distribution of preferences turns out to be. This is the approach that
Wilson (1987, p. 36) has advocated, observing that the rules of a market “are
not changed as the environment changes; rather they persist as stable, viable
institutions.” I now turn to showing that the double auction fulfills this goal.
While neither strategy-proof nor efficient, it is approximately strategy-proof
even for moderately sized markets and approaches full ex post efficiency with
surprising speed as the market grows in size.

4 Properties of the double auction

4.1 Model

The double auction is a simple operationalization of supply and demand as a
one-shot game that Aldo Rustichini, Steven Williams, and I have studied.
There are m sellers, each of whom owns a single, indivisible widget, and m
buyers, each of whom might like to purchase a single widget. For a given
seller i the widget’s opportunity cost, which must be met if she is to be willing
to transfer it, is ¢;. This cost is private to her; the other 2m — 1 traders believe
that her cost ¢; was independently drawn from the distribution F(-) on the
unit interval [0, 1]. For a given buyer j the widget’s value is v;; the other
2m — 1 traders believe that it was drawn independently from the distribution
G(-) on [0, 1]. We assume that F and G are C' and that their densities f and g
respectively are bounded above by the positive constant § and below by the
positive constant ¢. The pair (F, G), which we call the market’s environment,
along with the rules of the double auction and the strategies of each trader are
common knowledge.
The sequence of five events that constitute a double auction are:

1. The sellers and buyers all independently draw their costs ¢; and values v;.
Each trader’s cost/value is private information to that trader.

2. Simultaneously sellers and buyers submit offers and bids that are functions
of their costs/values. Specifically, S;(c;) is seller i’s offer when her cost is ¢;
and the function S; : [0, 1] — [0, 1] is her strategy. Exactly parallel, B;(v;) is
buyer ;j’s bid when his value is v; and the function B, : [0,1] — [0, 1] is his
strategy.

3. Given the offers and bids a market clearing price is set. Sort the 2m offers/
bids from lowest to highest,

Sy S82) = S S(m) S Sm+1) < 00 < S2m)s
and fix the price at

S(m +Sm 1
p=" (5)
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which is market clearing with respect to traders’ reported costs and
values.!?

4. Assign the m widgets to the m traders that made the m highest offers/bids.
Each buyer who acquires a widget pays p and each seller who relinquishes
a widget receives p. Consistent with the utility functions (1) and (2) a seller
who sells her widget realizes utility p — ¢;, and a buyer who purchases a
widget realizes utility v; — p. Sellers and buyers who do not succeed in
trading realize O utility. Note that summing the traders’ utilities gives the
total gains from trade that the double auction realizes.

5. The market disperses. Traders do not have another chance to either pur-
chase or sell widgets.

The one-shot nature of the game is crucial, for if it were repeated, then each
trader’s opportunity cost of trading would not be ¢; or v;, but would be a
transformation of ¢; or v; reflecting future opportunities to trade, perhaps at a
better price.

Modeled in this manner the double auction is a game of incomplete infor-
mation and the appropriate solution concept is Bayesian Nash equilibrium.
A set of strategies, {Si,...,Sm, Bi,..., By, is an equilibrium if (i), for each
seller i and for each possible cost ¢; € [0, 1], the offer Si(c¢;) is a best response to
the strategies of the 2m — 1 other traders and (ii), for each buyer j and for each
possible value v; € [0, 1], the bid B;(v;) is a best response to the strategies of the
2m — 1 other traders. From the viewpoint of an individual trader the bids and
offers of the other traders are random variables because their costs and values
are private information. Therefore, given the strategies of the other traders, an
offer S;(c;) is a best response if it maximizes the expected utility of seller i
when her cost is ¢;. Similarly a bid B;(v;) is a best response if it maximizes
buyer j’s expected utility when his value is v;.

We only consider symmetric equilibria in which all sellers play the same
strategy S(-) and all buyers play the same strategy B(-). We also only consider
equilibria in which trade occurs with positive probability and equilibria in
which sellers always ask at least as much as their cost and buyers offer no
more than their value.'® This structure implies that in equilibrium (i) sellers
and buyers’ strategies are strictly increasing over the relevant domains and (ii)
a tie between a bid and an offer is a zero probability event.

'3 More generally price can be set anywhere in the interval (s, Suu+1)) of possible
market clearing prices according to the formula, p = (1 —k)s() + kS(us1), Where
k € (0,1) is a fixed parameter that is common knowledge.

16 The first part of this statement rules out the uninteresting no-trade equilibrium in
which each seller, no matter what her cost is, asks for a price 1 and each buyer, no
what his value is, demands a price 0. The second part of the statement rules out
dominated strategies in which, for instance, a seller with cost ¢/ that is near the right
end of the interval [0, 1] offers to sell her widget for less than her cost (S(c/) < ¢/). Her
equilibrium strategy S might validly specify such an offer because in equilibrium the
highest bid any buyer will make is B(1), which will be strictly less than 1, and if S(c/) >
B(1), then her offer will never be accepted, i.e., the dominated offer S(c/) is costless for
her to make.
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Given an environment (F, G) and a selected equilibrium <.S, B) for a size

m market, the double auction’s relative inefficiency is

Fm(Fv G) — ¢2A(F7 G)
En(Fv G)

e(¢;]1)1A7 F, G) =
where (i) I;,(F, G) is the ex ante expected gains from trade if each trader acted
as if the double auction were strategy-proof and reported their true costs/
values, thus guaranteeing an ex post efficient outcome in which all potential
gains from trade are always realized, and (ii) g/ﬁ,le(F , G) is the ex ante expected
gains from trade that the selected equilibrium achieves. In short, e((/ﬁBA, F,G)
is the proportion of the possible gains from trade that the double auction’s

selected equilibrium (S, B) fails to achieve in expectation.

4.2 Approximate strategy-proofness of the double auction

The main theorem that Rustichini, Williams, and I proved concerning equi-
libria of double auction is this.'”

Theorem 1. (Rustichini et al 1994). Given an environment (F,G), continuous,
positive functions k(q,q) and &(q, q) exist such that, for all market sizes m > 2
and all equilibria {S, B) of the double auction,

S(e) — ¢ < K(gy’lq) (6)
for all ¢; € 0,0),

oo~ Bloy) < L0 ™
for all v, € (1,1, and

(PN F,G) < f(i’f). (8)

Inequalities (6) and (7) say that in equilibrium the maximal amount by which
traders misrepresent their costs/values — i.e., misrepresent their preferences — is
cut in half each time the market’s size doubles. Note that these bounds apply
to all possible equilibria, even equilibria with discontinuous strategies if such
equilibria should exist. Inequality (8) says that the maximal relative ineffi-
ciency of equilibria is cut by a factor of four each time the market’s size
doubles.

The driving force behind the bounds (6) and (7) on strategic misrepresent-
ation can be explained as follows. Taking the viewpoint of a buyer, his gain

17 In their statement of the theorem the bounds (¢, §) on the densities f and g do not
appear. They are added here because they are necessary in the statement of Theorem 2
below. It is a tedious but straightfoward exercise to go through the proofs and derive
how the constants x and & depend on (g, §).
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from misrepresenting his value v; downward is to try to force the market
clearing price p downward. But, given the rule (5) for computing p, he can
only do this if his bid is the (m + 1)st highest among the 2m bids and offers."®
The probability of being the (m + 1)st highest offer/bid is roughly propor-

. | S . . .
tional to —, i.e., it decreases quickly with market size. On the other hand the
m

cost of misrepresenting is that he may be inefficiently excluded from trading,
which occurs if B(v;) < p < v;. For a given magnitude of misrepresentation,
v; — B(v;), the probability of being excluded does not necessarily decrease with
market size, but may actually increase because the standard deviation of p

around the limit competitive price is proportional to \/L?n' The bounds (6) and
(7) in effect represent a balance, as m increases, between the decreasing
expected gains from misrepresentation and the costs of misrepresentation.

Figure 2 shows for the uniform environment (i.e., F and G are both the
uniform distribution) the effect of these bounds by graphing a representative
bundle of equilibrium strategies for markets of sizes 2, 4, and 8 respectively.!®
The horizontal axis represents traders’ costs/values and the vertical axis rep-
resents their offers/bids. The 45° diagonal line represents truth-telling. If the
double auction were strategy-proof, then that line would be the graph of every
trader’s strategy. Their strategic behavior, however, implies that an equilib-
rium consists of a pair of lines, one above the diagonal that graphs the strat-
egies of sellers in that particular equilibrium and one below the diagonal that
graphs the strategies of buyers in that equilibrium. Comparison of the three
panels for different market sizes shows two effects of increasing market size:
(i) traders’ strategies approach truth-telling and (ii) the bundles of strategies
rapidly become smaller. Point (ii) is interesting because it suggests that in
an important sense as m becomes large the double auction has an essentially
unique equilibrium.

Figure 3 — a Harberger triangle — supplies intuition as to why the linear
bounds (6) and (7) on misrepresentation lead to the quadratic bound (8) on
relative inefficiency. Let the environment be the uniform environment. The SS
and DD curves represent the expected number of widgets sold per seller and
purchased per buyer, i.e., SS and DD are the expected per capita supply and
demand curves for a double auction in the uniform environment. If the double
auction were strategy-proof and if traders reported their true costs/values,
then at point A the expected market price would be p = 0.5, the expected per
capita quantity would be ¢ = 0.5, and the allocation would be ex post efficient.

But traders do misrepresent. For market size m’ and a particular equilib-
rium, choose ¢’ and v’ such that S(¢’) = 0.5 and B(v") = 0.5. A seller’s offer is

18 A buyer may affect the price if his bid is the mth highest, but in that case it does him
no good because he does not trade.

19 The best that can be done is to plot a representative bundle of equilibria because
numerical experimentation suggests that a double continuum of smooth equilibria
exist.
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Fig. 2. Bundles of equilibrium strategies for different market sizes m if values v; and
costs ¢; are distributed uniformly on the unit interval

less than 0.5 only if ¢; < ¢’ and a buyer’s bid is greater than 0.5 only if v; > v'.
Therefore the expected per capita quantity sold is not 0.5, but rather is ¢’ be-
cause (i) all sellers for whom ¢; € (¢/,0.5) should trade but do not and (ii),
similarly, all buyers for whom v; € (0.5, v") should trade but do not. The area
of the triangle ABC therefore represents the expected per trader gains from
trade that are not realized as a result of strategic behavior. R
Double the market size to 2m’ and let the new equilibrium strategies be S
and B. The per capita expected supply and demand curves remain unchanged.
Let S(¢”) = 0.5 and B(v") = 0.5 where
0.5—¢ "—0.5
0.5 — C// N Tc and U// - 05~ UT
because the magnitude of each traders’ misrepresentation is cut in half
approximately. The expected numbers of units sold per capita is therefore ¢”
0.5—¢' .
where 0.5 — ¢" ~ Tq In conformance with the theorem’s bound (8) on

the relative inefficiency of the double auction, the area of triangle AEF, which
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\ 4

Fig. 3. Harberger triangle demonstrating that the relative inefficiency of the double
auction converges to 0 quadratically

Table 1 Relative inefficiencies of three mechanisms

m Constrained Double Auction Fixed
efficient mechanism most efficient least efficient price rule

2 0.056 0.056 0.063 0.22

4 0.015 0.015 0.016 0.18

6 0.0069 0.0069 0.0070 0.16

8 0.0039 0.0039 0.0039 0.15

represents the expected per trader gains from trade that are not realized as a
result of strategic behavior, is one-fourth the area of triangle ABC.

The power of this bound is shown in Table 1. For the case of the uniform
environment it shows the relative inefficiencies of three different allocation
mechanisms:

* The constrained efficient mechanism in which mechanism design theory has
been used to tailor the mechanism to minimize its relative inefficiency sub-
ject to three constraints: incentive compatibility, interim individual ratio-
nality, and ex ante budget balancing.

* The double auction. The two values shown for its relative inefficiency are
the minimum and maximum inefficiencies found within a representative
bundle of equilibria.

* The fixed price rule with the fixed price set at the competitive price, p = 0.5,
of the limit market with m = co.
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Inspection of the table shows that for m as small as 6 or 8 both the constrained
efficient mechanism and the double auction are essentially ex post efficient.
Consequently strategic behavior within the double auction is not a practical
issue for markets even as small as that.

This last observation, that for m on the order of 6 or 8 strategic behavior is
inconsequential, is the answer that I offer to the question I originally posed:
why is price theory so robust even though it ignores the possibility of strategic
behavior? This model of double auction mediated trade suggests that the
effects of strategic behavior attenuate so quickly as the size of the market
increases that it is a good and justifiable approximation to ignore its existence
even in moderate sized markets.

The double auction achieves this excellent performance by being approxi-
mately strategy-proof in moderate and larger sized markets. Without offering
a formal definition, I suggest that it is approximately strategy proof in two
senses. First, as m increases equilibrium strategies converge towards truth-
telling at a fast rate. Thus, for moderate sized and greater m, equilibria are
almost strategy-proof in the sense that the equilibrium behavior of every
trader is to reveal almost his true preferences. Second, if traders are boundedly
rational (or just lazy), then substituting the focal strategy of truthful revelation
for the equilibrium strategies is a reasonable decision since, for all but genu-
inely small markets, truthful revelation is an ¢-equilibrium that, additionally,
happens to be ex post efficient. Moreover it is an ¢-equilibrium that is immune
to the difficulty that Gul and Postlewaite (1992, p. 1284) raise concerning such
e-equilibria:

... while approximately optimal behavior may result in efficient outcomes,
this certainly does not imply that precisely optimal behavior will result in
approximately optimal outcomes. The cumulative effect of many agents’
adjustments from approximately optimal behavior to optimal behavior, the
subsequent adjustments to these adjustments, etc., can be large.

For the double auction we know that these adjustments are small and that
precisely optimal behavior leads to an equilibrium that is close to the truthful
revelation outcome. Thus even if some traders precisely optimize and others
treat the double auction as strategy-proof and truthfully reveal, the outcome
remains quite satisfactory from a welfare perspective.

4.3 Worst-case asymptotic optimality of the double auction

The above discussion establishes that the double auction performs exceedingly
well. Nevertheless if one is to paste the label “approximately strategy-proof”
onto it for moderately sized and larger markets, then one would like to know
that there is not some other allocation mechanism ¥ that is usable across a
variety of environment (F, G) and that dominates the double auction in the
quickness of the convergence of its equilibria to ex post efficiency. In recent
work Steven Williams and I (1999) have shown that in a well defined sense
this is not a issue: an environment (F, G) exists in which the double auction’s
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rate of convergence to efficiency is equal to the rate at which the best possible
allocation mechanism asymptotically converges to efficiency.

The framework for this result is as follows. Let the set of admissible envi-
ronments (F, G) be E. A market game ¢,, for a size m market consists of a
strategy set for each of the m sellers and m buyers, an outcome function that
maps strategy profiles into allocations, and an equilibrium selection rule that
for each environment in E picks a Bayesian Nash equilibrium of the market
game. A market mechanism @ over E is a sequence of market games for each
possible market size m > 2; thus @ = {¢,, ¢5,...}. Let ¢,,(F, G) be the ex ante
expected gains from trade that the market game ¢,, generates in the environ-
ment (F, G) and, as before, let the mechanism’s relative inefficiency be

Fm(Fv G) — ¢m(F7 G)
I'(F,G)
The worst-case relative inefficiency of the market game ¢,, over the admis-
sible environments E is

ewt)r(¢’n7E) = sup €(¢va7 G)
(F,G)eE

e(¢m» G, F) =

It is the relative inefficiency of ¢,, in that environment (F, G) € E that max-
imizes that inefficiency.

Given a set of admissible environments £ and a set of market mechanisms
M that are defined on E, a market mechanism @ = {¢,, ¢5,...} € M is worst-
case asymptotic optimal over E among market mechanisms in M if, for any
O* = {¢;,43,...} € M, a constant # > 0 exists such that

ewar(¢m7 E) S ’76 wor(¢;ﬂ E)
for all m > 2. In other words, the market mechanism @ is worst-case asymp-
totic optimal if no other market mechanism @* exists such that, for each
market size m € {2, 3,4, ...}, the ratio between (i) its relative inefficiency in the
environment within E it finds most difficult and (ii) @*’s relative inefficiency in
the environment that @* finds most difficult is bounded by a finite constant.
Said yet another way, @ is worst case asymptotic optimal if no other mecha-
nism has worst-case relative inefficiency that converges to zero at a faster rate
than the double auction’s worst case relative inefficiency.

Given this setup, the following theorem is true.

Theorem 2. Satterthwaite and Williams (1999). Let E be a set of admissible
environments (F, G) such that (i) the uniform environment (Gy .Fy) is included,
(ii) the densities (f,g) for every element of E satisfy q<f,g < q for positive
q,q, and (iii), for every environment (F,G) € E, an equilibrium with positive
probability of trade exists. Let M be the class of all interim individually rational
and ex ante budget balancing market mechanisms. The double auction is worst-
case asymptotic optimal over the environments E among the class M of market
mechanisms.

The proof of this theorem involves using mechanism design theory and, in
particular, a new form for the incentive constraints that Williams (1998)
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developed. We show that, for the uniform environment, the relative ineffi-
ciency of the constrained efficient mechanism, @F = {¢2CE , gE, ...}, appro-
aches 0 no faster than the relative inefficiency of the double auction, i.c., a
& > 0 exists such that

¢
6( CE FU7GU) > W

m
No other mechanism in the class of interim individually rational and ex ante
budget balancing market mechanisms can converge faster than this on the
uniform environment. Equilibria of the double auction converge at least that
fast on the uniform environment and on any other environment that meets the
conditions of Theorem 1. Together the last two statements imply the theorem.
While market mechanisms may exist that have a faster than quadratic
rate of convergence on some environments within £, for such mechanisms the
uniform environment is the “worst” case that is needed to make the theorem
true. That the uniform environment plays the role of worst case is nice be-
cause the uniform case is anything but pathological. Our conjecture is that
there are no mechanisms that converge at a faster than quadratic rate in any
but pathological environments.

5 Conclusions

In this paper I have tried to make two main points. The first is that the double
auction has remarkable properties when applied to a simple exchange market:
in equilibrium the maximal misrepresentation of preferences is inversely pro-
portional to the market’s size, the relative inefficiency is inversely proportional
to the square of the market’s size, and no other mechanism dominates this rate
of convergence to efficiency. These results provide a justification for price
theory’s disregard of strategic behavior. The second, meta-point is that strat-
egy-proofness in its exact form is too strong. There have been a few positive
results such as Barbera, Sonnenschein, and Zhou’s (1991) “Voting by Com-
mittees” in which they found interesting and useful strategy-proof voting rules
for a common group choice problem. Nevertheless the empirical prediction
based on the many papers characterizing strategy-proof mechanisms must be
that for almost all settings that remain to be explored no interesting strategy-
proof mechanisms exist. Rather than continuing this program of characteriz-
ing strategy-proof mechanisms in more settings, it may be better to seek out
approximately strategy-proof mechanisms.

The approach that I described above is only one possible direction for
pursuing approximate strategy-proofness. For example, Kalai and Ledyard
(1998) have shown how placing the group choice problem in a long run, re-
peated setting can be used to generate an approximately, or even exactly,
strategy-proof mechanism. The work of Saari (1995) and Merlin and Saari
(1997) on the geometry of voting suggests that it may be possible to determine
the rate at which possibilities for manipulation decrease as the number of
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voters and alternatives increase. Bartholdi and Olin (1991) and Bartholdi,
Tovey, and Trick (1992) use complexity theory to show that computing
whether manipulation is possible in a particular situation can be a NP-hard
problem, thus suggesting that a convincing theory of approximate strategy-
proofness might be based on bounded rationality.
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